Lecture 20: Pseudorandom Functions

- Let $\mathcal{G}_{m,n,k} = \{g_1, g_2, \dots, g_{2^k}\}$ be a set of functions such that each $g_i \colon \{0,1\}^m \to \{0,1\}^n$
- This set of functions $\mathcal{G}_{m,n,k}$ is called a pseudo-random function if the following holds. Suppose we pick $g \stackrel{s}{\leftarrow} \mathcal{G}_{m,n,k}$. Let $x_1, \ldots, x_t \in \{0,1\}^m$ be distinct inputs. Given $(x_1, g(x_1)), \ldots, (x_{t-1}, g(x_{t-1}))$ for any <u>computationally bounded party</u> the value $g(x_t)$ <u>appears</u> to be uniformly random over $\{0,1\}^n$

Secret-key Encryption using Pseudo-Random Functions

Before we construct a PRF, let us consider the following secret-key encryption scheme.

• Gen(): Return sk = id
$$\stackrel{\$}{\leftarrow} \{1, \ldots, 2^k\}$$

3 $\operatorname{Dec}_{\operatorname{id}}(\widetilde{c},\widetilde{r})$: Return $\widetilde{c} \oplus g_{\operatorname{id}}(\widetilde{r})$.

Features. Suppose the messages m_1, \ldots, m_u are encrypted as the cipher-texts $(c_1, r_1), \ldots, (c_u, r_u)$.

- As long as the r₁,..., r_u are all distinct, each one-time pad g_{id}(r₁),..., g_{id}(r_u) appear uniform and independent of others to computationally bounded adversaries. So, this encryption scheme is secure against computationally bounded adversaries!
- The probability that any two of the randomness in r₁,..., r_u are not distinct is very small (We shall prove this later as "Birthday Paradox")
- This scheme is a "state-less" encryption scheme. Alice and Bob do not need to remember any private state (except the secret-key sk)!

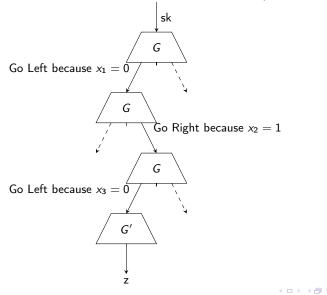
Construction of PRF I

- We shall consider the construction of Goldreich-Goldwasser-Micali (GGM) construction.
- Let $G: \{0,1\}^k \to \{0,1\}^{2k}$ be a PRG. We define $G(x) = (G_0(x), G_1(x))$, where $G_0, G_1: \{0,1\}^k \to \{0,1\}^k$
- Let $G' \colon \{0,1\}^k \to \{0,1\}^n$ be a PRG
- We define $g_{id}(x_1x_2...x_m)$ as follows

$$G'\left(G_{x_m}(\cdots G_{x_2}(G_{x_1}(\mathrm{id}))\cdots)\right)$$

Construction of PRF II

Consider the execution for $x = x_1x_2x_3 = 010$. Output z is computed as follows.



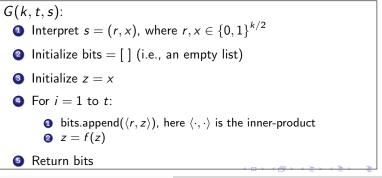
PRF

-≣ ▶

Pseudocodes

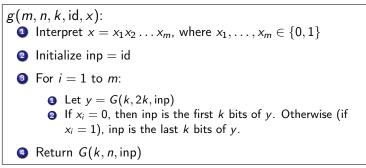
We give the pseudocode of algorithms to construct PRG and PRF using a OWP $f\colon \{0,1\}^{k/2}\to \{0,1\}^{k/2}$

- Suppose $f \colon \{0,1\}^{k/2} \to \{0,1\}^{k/2}$ is a OWP
- We provide the pseudocode of a PRG G: {0,1}^k → {0,1}^t, for any integer t, using the one-bit extension PRG construction of Goldreich-Levin hardcore predicate construction. Given input s ∈ {0,1}^k, it outputs G(s).



Pseudocodes

• We provide the pseudocode of the PRF $g_{id}: \{0,1\}^m \rightarrow \{0,1\}^n$, where $id \in \{0,1\}^k$, using the GGM construction. Given input $x \in \{0,1\}^m$, it outputs $g_{id}(x)$.



(日本) (日本) (日本)

Naor-Reingold PRF

- This function evaluation is parallelizable, and its security is based on the "Decisional Diffie-Hellman problem" (DDH)
- Let p and ℓ be prime numbers such that ℓ divides (p-1).
- $g \in F_p^*$ generate a subgroup of order ℓ
- Naor-Reingold PRF are functions $\{0,1\}^n \to F_p^*$ defined below:

$$f_a(x) := g^{a_0 \cdot a_i^{x_1} \cdot a_2^{x_2} \cdots a_n^{x_n}},$$

where

$$a = a_0 a_1 \cdots a_n \in (F_\ell)^{n+1}$$
$$x = x_1 x_2 \cdots x_n \in \{0, 1\}^n.$$

• Note: For an additive group like an elliptic curve, the definition of the function is

$$f_{a}(x) := \left(a_{0} \cdot a_{1}^{x_{1}} \cdot a_{2}^{x_{2}} \cdots a_{n}^{x_{n}}\right) \cdot G,$$

where the subgroup generated by G has order ℓ .